EG Series Vertical In-line Pump User Manual

Content

- 1. Brief Description
- 2. Assembly and Disassembly
- 3. Installation
- 4. Starting, Checking, Stopping, Running and Maintenance
- 5. Troubleshooting
- 6. Installation Dimensions

1. Brief Description

Model Form

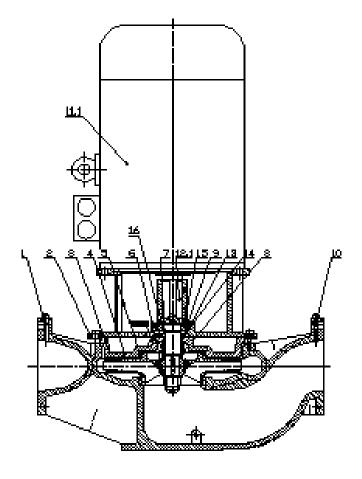
For example,

EG products are a series of vertical in-line pumps designed according to the European Standard BS EN733/ DIN24255.

As in-line pumps they are used for pumping clean water or liquids with characteristics similar to water, with wide application ranging from plants, mines, city water supplies, air-conditioning, to firefighting, cooling, environmental machinery, irrigation, and so on.

Pump performance can be adjusted into different levels through impeller trimming. Motor shaft is to be inserted into pump shaft for driving. This way of close-coupling ensures the alignment of pump and motor; meanwhile, pump impeller runs in good balance both dynamically and statically, therefore pump would be kept very well in operation. EG S pump uses IEC standard motor and pump can be assembled separately without motor. EG E pump requires a special motor with extra-long shaft. EG pumps are designed with air-bleeding device, advanced in structure, compact in size, less room-required for installation and easy to maintain.

Design	Performance referring to BS EN733/ DIN24255 standard		
Structure	Vertical, Single-Stage, Single-suction, Volute Casing, In-line, Centrifugal		
	Pump		
Flange	DIN2501 (ISO7005.2 / GB/T17241.6 PN1.6) standard, ANSI B16.5		
	Class150lb optional		
Rotation	Clockwise viewing from the drive side		


Material

Casing	Cast Iron standard, Ductile Iron optional
Impeller	Bronze standard, Cast Iron, Stainless Steel optional
Shaft	ASTM 420 standard, ASTM 304, ASTM 316, ASTM 1045 optional
Shaft Seal	Mechanical Seal (Caron-Sic/Viton standard)


Operating Data:

Flow Rate (Q)	2-450m ³ /h
Head (H)	2-150m
Speed	1450 or 2900 rpm (50Hz)
	1750 or 3500 rpm (60Hz)
Temperature	-10°C to 105°C
Working Pressure	16 Bar standard

Structure Drawing

1. EG S

2. EG E

No.	Part Name	No.	Part Name	No.	Part Name
1	Volute Casing	7	Mechanical	12.1	Pump Shaft
2	Adapter	8	Seal Seat	12.2	Motor Shaft
3	Impeller	9	Slinger	13	Bearing Cover
4	Casing Cover	10	Screw Plug	14	Flexible Washer
5	Wear Ring	11.1	IEC Standard Motor	15	Bearing
6	Impeller Nut	11.2	Extra-long Shaft Motor	16	Circlip for Shaft

2. Assembly and Disassembly

- 1) Part Assembly
- 1.1) Pump body assembly
- 1.1.1) Screw on plug for pressure-testing hole and drain hole;
- 1.1.2) Screw on bolts for pump casing;
- 1.1.3) Grease and drive wear ring into pump body;
- 1.2) Shaft assembly (EG E skip this step)
- 1.2.1) Clean up the shaft, in the case that the inner hole of bearing cover is smaller than shaft Max. Diameter, put on bearing cover first;
- 1.2.2) Grease bearing position, push bearing inside;
- 1.2.3) Vise the locking ring(circlip for shaft) by caliper, then block it into the shaft ring clasp bed;
- 1.2.4) Wear flexible gasket onto bearing;
- 1.3) Casing cover assembly
- 1.3.1) Drive back wear ring into pump cover, screw on air-bleeding hole plug;
- 1.3.2) Grease the edge of pump cover, put paper washer onto casing cover;
- 1.3.3) Grease mechanical seal position on casing cover, press in mechanical seal static ring. Pay attention not to scratch static ring surface, pad rubber or plastic plate first before press in the static ring;
- 2) General assembly
- 2.1) Grease adapter's bearing position (EG E skip this step);
- 2.2) Insert shaft assembly into adapter (EG E joint adapter with motor and fasten);
- 2.3) Lock bearing cover with bolts (EG E skip this step);
- 2.4) Wear slinger onto shaft;

- 2.5) Set in casing cover, ensure air-bleeding hole is aligned with adapter;
- 2.6) Grease shaft then fit mechanical seal ring;
- 2.7) Press down seal seat with regular strength, make sure the spring can pop-up;
- 2.8) Put on the key, press impeller, place lock washer, tighten up impeller nut, then bend over lock washer;
- 2.9) Set every assembly into pump casing according to drawing, lock up pump nut tightly.

电机接线盒 Motor Terminal Box

泵体出水口 Discharge Port (Pump Casing) 泵盖放水槽 泵体进水口 Discharge Slot (Casing Cover) Suction Port

泵盖放气孔 Air-bleeding Hole (Casing Cover) (从上往下看) Viewing from the top down

- 3.) Motor Mounting (EG E skip this step)
- 3.1) Put the pump horizontally. Mount on motor key;
- 3.2) Hoist the motor by cranes, put motor shaft into pump shaft slowly, pay attention to the alignment of the two shafts. If it is hard to get coupled, deburr keyway into smooth, note that beating is absolutely prohibited.
- 3.3) Tighten blots and nuts.
- 3.4) Screw on the clamping blots.

3. Installation

Correct way of pump installation makes great sense of stable performance and long service life. All the procedure of mounting and adjusting should be carried out carefully. For outline and dimension, see the outline picture and dimension table. Remove all the dust and dirt on base plate then place it onto ground foundation. Check foundation level by level meter, iron wedge or steel shims can be used for adjustment. Dig foundation bolts holes. Check foundation bolts to see if it is loose or not after concretion, and then tighten the bolts, check level again.

4. Starting, Checking, Stopping, Running and Maintenance

Starting

Check motor rotation before joint pump and motor together. Ensure that the pump is running freely without friction. Turn down discharge valve. Fill the pump with liquid or priming with a vacuum pump. Switch on power, gradually turn up

discharge valve and adjust to the required operating performance..

Caution: The operation time should not be more than 3 minutes while the outlet valve being closed.

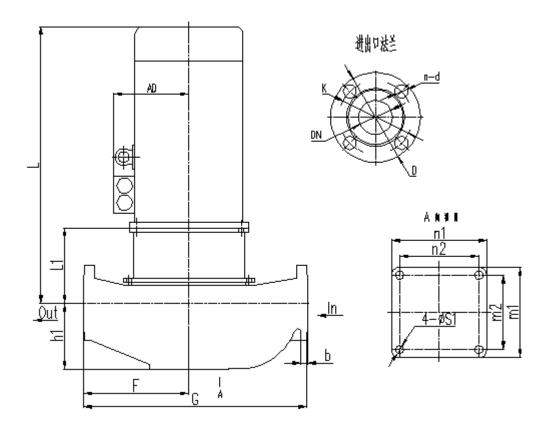
Checking

Check pump rotation direction: clockwise viewing from the drive side.

Stopping

Turn down discharge valve gradually, switch off the power. Drain away water left inside the pump to avoid frost crack while the temperature is blew 0°C. To keep a pump out of use for a long time, disassemble and store them in an appropriate place after proper lubrication and packing.

Running and Maintenance


Check the readings by the meters in starting and running to make sure that the bearing heating, mechanical seal leakage and heating, pump vibration and noise or other operation issues are under control. Abnormal cases should be handled immediately. Bearings are not allowed to work at the temperature 40°C higher than the ambient temperature with the temperature not exceeding 80°C. Lubrication should be 4# Calcium Base Grease or SAE20W Oil. Pumps working at 2900 rpm should be replenished with new oil or grease every period of 2500 working hours, 1450 rpm ones should be replenished every 5000 working hours. Ball bearings should be dismantled and replaced by the new ones every 10000 working hours, the chamber should be thoroughly cleaned out and filled with fresh lubrication.

5. Troubleshooting

Defects	Causes	Solutions	
Pump not primed, both the	Not enough water filled in	Filled with water again	
hands of vacuum gauge and	the pump	Fix the leakage	
manometer switches	Air leakage in the pipe or		
violently	meters		
Pump not primed and high	Foot valve not open or	Check or replace the foot	
degree vacuum indicated on	clogged	valve	
the vacuum gauge	Suction resistance too high or	Clean or replace the inlet	
	suction lift too high	pipe	
		Reduce the suction lift	
No water discharged while	Wrong direction of rotation	Check or shorten the pipe	
outlet pressure is pointed by	Impeller clogged	Check the motor rotation	
the manometer		Remove the pipe joint and	
		clean the impeller	
Lower capacity than	Pump clogged	Clean pump and pipes	

specified value	Wear ring worn out	Replace the wear ring
Too much power consumed	Packing too tight	Loosen gland packing
by pump	Stuffing box too hot	Replace impeller
	Impeller worn out	Turn down discharge valve to
	Too large flow that the pump	reduce flow
	is working in.	
Abnormal noise inside the Flow too large		Turn down discharge valve
pump	Resistance too high in the	Reduce flow
Pump not primed	inlet pipe	Fix leakage
	Suction lift too high	Lower liquid temperature
	Air leakage into the inlet pipe	
	Liquid temperature too high	
Bearings over-heart	Short of lubricant or	Filled with clean oil or grease
	lubricant too dirty	Align coupling centerline
	Pump shaft not in alignment	Replace bearing
	to that of the motor	
	Bearing worn out	
Vibration	Pump shaft not in alignment	Align coupling centerline
	to that of the motor	

6. EG S, EG E Installation Dimensions

